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1. Introduction

Quantum systems with defects or boundaries often show interesting physical behaviors. For

example, impurities in various materials have been one of the major subjects of research

in condensed matter physics. In such systems, we expect that the whole system (both the

bulk and the boundary) flows towards a fixed point of the renormalization group in the

low energy limit, where we can employ the powerful method of conformal field theory. The

boundary or defect preserves a part of the conformal symmetry at the fixed point.

One of the important quantities which characterizes properties of the defects or bound-

aries is known as the boundary entropy (or, equivalently, the ground state degeneracy g) [1].

This measures the degrees of freedom localized at a given defect and is a boundary analogue

of the central charge c. Recently, it has also been pointed out that the boundary entropy

can be regarded as the finite part of the entanglement entropy [2].

In general, the theory is strongly interacting at the RG fixed point and sometimes it

is very difficult to calculate physical quantities like the boundary entropy. However, if the
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theory has a holographic dual, we can compute many quantities rather simply by using the

dual gravity description. The most tractable examples will be the ones for which we can

apply the AdS/CFT correspondence.

The purpose of this paper is to holographically compute the boundary entropy of

2d conformal field theories with defects using several methods (for early discussions refer

to [3]). The holographic calculation of entanglement entropy has been recently formu-

lated [4, 5]. This allows us to find the boundary entropy from the entanglement entropy,

in addition to using a probe computation of the boundary entropy at high temperature.

The organization of this paper is as follows. In section 2, we present a brief sum-

mary of the definition and properties of the boundary entropy. We will also work out

a close relation between the g-theorem and the strong subadditivity of entanglement en-

tropy. In section 3, we perform the holographic computations of the boundary entropy

using both probe configurations and fully back-reacted geometries (in particular for the

Janus solution). In section 4 we summarize our conclusions. In appendix A, we present

the calculations of two point functions and the boundary entropy of a free scalar field in

the presence of the interface.

2. Boundary entropy and entanglement entropy

In this paper, we are interested in two dimensional conformal field theories (2d CFTs) in

the presence of a conformal defect. If we define the time and space coordinate by (t, x),

then we can consider a time-like defect which is situated at x = 0. The defect is called

conformal if a linear combination of two Virasoro symmetries in the bulk is preserved. We

will refer to a CFT with such a defect as a defect conformal field theory (DCFT) (e.g.

see the review part of [6]). Generically, there are extra propagating degrees of freedom

localized on the defect. However, it is also possible to construct a system with no new

degrees of freedom on the defect. Such a theory is called an interface CFT (ICFT). A

simple example of an ICFT is a compactified scalar field φ(t, x) whose radius jumps at the

defect. An interesting quantity which characterizes a system with a conformal boundary

or defect is the boundary entropy, Sbdy. Sbdy is related to the ground state degeneracy

g [1] as we explain below.

2.1 Boundary entropy and the g-function

Consider a 2d CFT with periodic Euclidean time, t ∼ t + 2π. We assume x is also

compactified on a large circle with radius L ≫ 1. When we introduce a defect at x = 0,

the partition function of this system on a torus behaves as

lim
L→∞

Ztorus = e−LE0+Sbdy , (2.1)

where E0 is the ground state energy when we regard x as the Euclidean time direction.

The quantity Sbdy is called the boundary entropy. This is motivated by the observation

that Sbdy is the entropy when we artificially treat L as the temperature and − log Ztorus

L

as the free energy. Originally, the boundary entropy was defined in a 2d system with a
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conformal boundary in [1]. However, the DCFT can be equivalently described by two

copies of the system with boundary via the doubling trick, as discussed, for example, in [6]

or in appendix A of this paper.

The quantity g, defined by

g ≡ eSbdy , (2.2)

represents the ground state degeneracy. We can extend the idea of the boundary entropy

to non-conformal systems and define the g-function. According to the g-theorem [1], the

g-function is a monotonically decreasing function with respect to the length scale l,

d

dl
log g(l) ≤ 0, (2.3)

in analogy to the c-function and c-theorem.

2.2 Boundary entropy from entanglement entropy

Recently, it was found that the boundary entropy is actually related to a physical entropy,

the entanglement entropy [2]. To define the entanglement entropy, we first divide the system

into two parts A and B. Accordingly, the total Hilbert space is factorized as H = HA⊗HB.

Next we introduce the reduced density matrix ρA = TrBρ for the subsystem A by tracing

out HB. Finally, the entanglement entropy is defined as the von-Neumann entropy for ρA

SA = −TrρA log ρA. (2.4)

Consider an infinitely long system and define the subsystem A by the finite interval with

length l. The subsystem B is defined to be the complement of A. Then the entanglement

entropy SA can be computed to be [7]

SA =
c

3
log

l

a
, (2.5)

where c is the central charge of the total system and a is the UV cut off (i.e. lattice spacing).

In the presence of a conformal boundary with boundary entropy log g, this is modified

as follows [2]

SA =
c

6
log

l

a
+ log g. (2.6)

Because the boundary cuts off half of the space, we have the coefficient c
6 instead of c

3 .

When we consider a conformal defect which is situated at the middle of the interval

A, we can regard the system as two copies of a BCFT by the doubling trick. This leads to

the following result

SA =
c

3
log

l

a
+ log g. (2.7)

To see the relation (2.7) quickly, let us remember that in the 2d CFT SA can be found

from the formula

SA = − ∂

∂n
Trρn

A

∣

∣

n=1
= − ∂

∂n

[

Zn

(Z1)n

]

∣

∣

∣

n=1
, (2.8)

where Zn is the partition function on the n-sheeted Riemann surface with a cut along the

interval A [2]. The important point is that both the original two dimensional space and the
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n-sheeted one both have a single connected boundary. Thus the ratio Zn

(Z1)n is proportional

to the factor g1−n, which leads to the formula (2.7).

On the other hand, if the defect is not located at the midpoint of the interval, the

entanglement entropy cannot be determined only from c and g, but rather it depends on

the details of the theory. This is because we cannot relate this DCFT setup to the BCFT

setup by the folding trick, as the quantity we are interested in does not have the reflection

symmetry about the defect. In other words, it is not possible to find a conformal map from

the n-sheeted Riemann surface defined by vn = w−l1
w+l2

with the defect at Re w = 0, to a

single complex plane C with a straight defect line except for l1 = l2, which means that the

defect is at the midpoint of the interval.

2.3 Strong subadditivity and g-theorem

It is intriguing to see if we can obtain useful properties of the boundary entropy from the

basic properties of entanglement entropy. One of the most important inequalities satisfied

by any entanglement entropy is the strong subadditivity constraint (e.g. refer to the review

part of [8, 9]). It is represented by the inequality

SA + SB ≥ SA∩B + SA∪B. (2.9)

The holographic derivation of strong subadditivity has been given in [10, 9].

It was shown in [8] that the entropic analogue of the c-theorem follows from this

relation. Therefore, it is natural to ask if the g-theorem can also be derived from this

condition. Let us start with a simple setup (see figure 1) in a defect CFT. A is defined by

[−la− lc, la + lc] and B is defined by the two intervals [−la− lb− lc,−la] and [la, la + lb + lc].

In this case, by substituting (2.7) into the strong subadditivity constraint (2.9), we obtain

c

3
log 2(la + lc) + log g(2(la + lc)) + 2 · c

3
log(lb + lc)

≥ 2 · c

3
log lc +

c

3
log(2(la + lb + lc)) + log g(2(la + lb + lc)). (2.10)

Then in the limit lb → 0 we find

d

dl
log g(l)

∣

∣

l=2(la+lc)
≤ c

6

(

2

lc
− 1

la + lc

)

. (2.11)

By taking the limit la → 0, we obtain the bound

d log g(l)

dl
≤ c

3l
. (2.12)

Even though this is not enough to prove the g-theorem (2.3), we can at least say that the

g-theorem is non-trivially consistent with the strong subadditivity.

To see the relation to the g-theorem more clearly, we need to cancel the log terms

in (2.10). This can be done by considering a relativistic setup as in figure 2. Notice that

by requiring Lorentz invariance, the Hilbert space HA for A depends only on the causal
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Figure 1: The simple setup of A and B at a common fixed time. Notice that both A and B live

in the same one dimensional space.

future (or past) of A and remains the same under any deformation which preserves it. If the

Lorentz invariant length of A is denoted by |A|, we can easily show |A|·|B| = |A∩B|·|A∪B|.
Owing to this relation, the authors in [8] were able to prove the c-theorem from the strong

subadditivity condition for this setup. Indeed, strong subadditivity leads to

S(l1) + S(l2) ≥ S(l3) + S(l4), (2.13)

where we assume l1l2 = l3l4 and l4 ≤ l1, l2 ≤ l3. This is equivalent to the concavity of the

entropy as a function of log l i.e.

l
d

dl

(

l
dS(l)

dl

)

≤ 0. (2.14)

Noting that c(l) = 3l dS(l)
dl , it is clear from (2.5) that the inequality (2.14) is precisely the

entropic c-theorem.

Now we return to the relation to the g-theorem and thus we assume that the bulk

region is conformal. If we again employ the choice of subsystems and the defect line as

described in figure 2, the bulk log terms are completely canceled out. Since the other part

of the entanglement entropy can be regarded as an entropic g-function, we simply obtain

log g(A) ≥ log g(A ∪ B). (2.15)

This indeed agrees with the g-theorem in a particular case. In this way, we have learned

that strong subadditivity for the entanglement entropy is closely related to the g-theorem

for DCFTs. We leave a further study of this issue as a future problem.

3. Holographic boundary entropy of defect

An interesting class of 2d CFTs, in which the boundary entropy can be calculated using its

relation to the entanglement entropy, is those 2d CFTs which have a dual description in

terms of a higher dimensional gravitational theory on an asymptotically AdS3 background.

A method to calculate entanglement entropies in theories with gravitational duals has been

found in [4, 5]. This equates the entanglement entropy of a spatial region M in the field

theory bounded by ∂M with A

4G
(3)
N

, where A is the area of a minimal area surface ending
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Figure 2: The relativistic setup of A and B. The vertical and horizontal directions represent the

time and space coordinates, respectively. The dotted light-like triangle delimits the causal future.

on ∂M and in a constant time slice of the 3d bulk . G
(3)
N is the 3d Newton constant. We

will apply this formula here to known examples of DCFTs with a gravitational dual.

In particular, we will look at three different systems. The first system we study is a

Randall-Sundrum (RS) like toy model [11, 12] of a brane coupled to gravity, which for a

certain range of tensions has a dual description in terms of a DCFT. Since this model, in

its simplest form, has not been embedded in string theory or any other consistent theory of

quantum gravity, we don’t know precisely what the DCFT is (and whether it exists at all).

But the advantage is that in this case we can calculate both the entanglement entropy as

well as (in the “probe” limit of small tension) the high temperature free energy, confirming

that the two alternative definitions of the boundary entropy do indeed agree.

The second model we look at is the Janus solution [13, 14]. In this example, one once

more knows the full bulk geometry and can calculate the entanglement entropy. For Janus

the dual DCFT is known and is of the interface type. We can calculate the boundary

entropy also in the limit of weak coupling, where the calculation is tractable on the field

theory side. To leading order in the parameter controlling the jump across the interface,

we observe agreement between weak and strong coupling.

Last, but not least, we look at defects with localized matter. These systems often have a

dual description in terms of a probe brane embedded in the AdS3 space. In these scenarios

we don’t have access to the entanglement entropy without controlling the backreaction.

However, we can calculate the boundary entropy via the high temperature free energy, as

was already pointed out in [3]. The dual field theory is once more well understood and we

can compare weak and strong coupling answers.

3.1 Defect in a toy model

Our first example of a 3-dimensional geometry with a dual description in terms of a DCFT

arises as a solution to the RS [11] action of a 2d brane with tension λ

S =
1

16πG
(3)
N

∫

d3x
√−g

(

R +
2

R2
AdS

)

− λ

∫

d2x
√−gI , (3.1)

where gI is the determinant of the induced metric on the 2d slice spanned by the brane.

Without the brane the solution to this system would be AdS3 with curvature radius RAdS.

For branes with a tension λ less than a critical value λ∗ = 1

4πG
(3)
N

RAdS

one can find solutions
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which have a brane with an AdS2 geometry and hence precisely preserve the symmetries

expected from a dual DCFT. No embedding of the system in this simple form into string

theory is known. Assuming that it makes sense as a quantum theory, the observables in

this theory have the interpretation of correlation functions in some DCFT [12]. For this

toy model we do not have an alternative definition of the DCFT.

3.1.1 The background solution

To construct the solution, consider the d + 1 dimensional asymptotic AdS background

ds2 = R2
AdS(dy2 + e2A(y)(dsAdSd

)2). (3.2)

The pure AdS corresponds to eA(y) = cosh y.

We are interested in the dual of a 2d CFT so we set d = 2. Then we can write

(dsAdSd=2
)2 = − cosh2 rdt2 + dr2. In the ordinary global coordinate we can rewrite as

follows

ds2 = R2
AdS(− cosh2 ρdt2 + dρ2 + sinh2 ρdθ2). (3.3)

For pure AdS3, the coordinates are related to each other via

cosh y cosh r = cosh ρ, sinh y = sinh ρ sin θ. (3.4)

Using these global coordinates the geometry on which the dual CFT lives is actually a

circle and not just a line. There are two defects at θ = 0 and θ = π, corresponding to the

boundary points at fixed y but infinite r. In the presence of a codimension one defect with

tension λ, the equation of motion becomes

−1 + (A′)2 + A′′ = 8πG
(3)
N RAdSλδ(y), (3.5)

where we assumed that the brane is situated at y = 0. This can be solved by

eA(y) = cosh(|y| − y∗). (3.6)

The constant y∗ is defined by

tanh y∗ = 4πG
(3)
N RAdSλ. (3.7)

The spacetime with the backreaction due to the brane becomes two copies of the partial

AdS spacetime defined by −y∗ < y < ∞ in the AdS sliced coordinates (3.2).

3.1.2 Boundary entropy from entanglement entropy

As mentioned in the beginning of this section, the holographic recipe for calculating en-

tanglement entropies is to find at a fixed time t the minimal area surface in the bulk that

ends on the boundary of the region whose entropy we want to calculate. In the case of a

3-dimensional bulk spacetime this minimal spatial area is simply a geodesic. If we concen-

trate on the largest region in the field theory that is symmetric around the defect we are

looking for a geodesic that connects the boundary points θ = −π/2 and θ = π/2. That is,

– 7 –
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in the coordinate system of eq. (3.2) we want to connect the point r = 0 at y = +∞ with

the point r = 0 at y = −∞. By symmetry it is easy to see that the geodesic is r = 0. We

will return to this in more detail later when we look at asymmetric regions.

For this longest geodesic we can easily calculate the extra length ∆L induced by the

defect brane as follows

∆L = 2RAdSy∗. (3.8)

Thus the extra contribution to the entanglement entropy becomes

∆SA =
RAdSy∗

2G
(3)
N

. (3.9)

In the probe limit, the brane tension is very small (y∗ ≪ 1) and we can approximately

obtain

∆SA = 2πR2
AdSλ. (3.10)

log g = ∆SA can directly be identified as the boundary entropy of the dual DCFT.

3.1.3 Boundary entropy from free energy

Without the brane, turning on a finite temperature corresponds to replacing the AdS3

solution in the bulk with a BTZ black hole,

ds2 = −h(rBTZ)dt2 +
dr2

BTZ

h(rBTZ)
+ r2

BTZdθ2 (3.11)

with h(rBTZ) = r2
BTZ − µ + 1. For simplicity we switched to units in which the curvature

radius RAdS = 1. For µ = 0 this is simply global AdS and reduces to eq. (3.3) by a

change of coordinates sinh(ρ) = rBTZ. The BTZ black hole has a horizon at rH such that

r2
H = µ − 1. The temperature of the black hole is given by T = h′(rH)

4π = rH

2π .

In order to study the free energy of the DCFT at finite temperature we need to find

the generalization of the BTZ black hole with the backreaction of the brane included. This

is a difficult problem and no solutions are known. However, in the small tension limit the

change of the geometry due to the brane can be neglected. As a power series expansion

in the tension of the brane, the leading contribution comes from the on-shell action of

the brane probe which minimizes its worldvolume in the fixed BTZ black hole background

geometry. This is in complete analogy to the calculation that allows one to calculate order

NfNc corrections to the order N2
c free energies in a theory with a large number of colors

Nc and a finite number of flavors Nf using probe branes [15]. This technique has been

first used for a free energy calculation in [16] and has been confirmed by many calculations

since.

The action describing the embedding of the brane is proportional to the worldvolume

of the brane,

Sprobe = −λ

∫

d2x
√−gI . (3.12)

A simple embedding is given by the union of θ = 0 and θ = π. This is the finite temperature

generalization of the probe stretching straight across the AdS3 space along the central y = 0

– 8 –
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slice in the coordinate system of eq. (3.2). It is the minimal action configuration which

satisfies the boundary conditions that the probe ends on the defects,1 which are located

at θ = 0 and θ = π. The induced metric on this brane is ds2 = −hdt2 +
dr2

BTZ
h and so

the determinant of the induced metric is 1. Wick rotating to Euclidean signature and

regulating the on-shell action by simply subtracting the zero temperature answer we get

for the free energy associated with a single defect

F = −TSon−shell = λ lim
rc→∞

(∫ rc

rH

dr −
∫ rc

0
dr

)

= −λrH = −2πTλ. (3.13)

The entropy now can be calculated using the standard relation

S = −∂F

∂T
= 2πλ. (3.14)

Restoring the curvature radius RAdS, this is in perfect agreement with the answer for the

boundary entropy we got from the entanglement entropy, eq. (3.10).

3.2 Boundary entropy and Janus solution

It is well-known that the near horizon limit of the D1-D5 system is type IIB string theory on

AdS3×S3×T 4. We assume that there are Q1 D1-branes and Q5 D5-branes in this system.

The AdS3/CFT2 correspondence claims that the string theory in this background is dual

to the (4, 4) superconformal sigma model whose target space is the symmetric product

(T 4)Q1Q5/SQ1Q5. We would like to deform this CFT so that it includes a conformal defect.

In particular, we are interested in an interface which separates two regions with T 4 of

different radii. We assume that the radius of T 4 changes from R+ to R−.

Recently, a 3 dimensional gravity background has been constructed [14] that is a

particular example of the Janus solutions. The supergravity metric in the Einstein frame

is

ds2
IIB = e

φ

2 (ds2
(3) + dΩ2

3) + e−
φ

2 ds2
T 4. (3.15)

The (2 + 1) dimensional part ds2
(3) is described by the Einstein-Hilbert action plus a

scalar field φ (i.e. in Einstein frame). This is because
√

−g(10)R(10) =
√

−g(3)R(3). For

the Janus solution, the 3D metric is explicitly given by

ds2
(3) = R2

AdS(dy2 + f(y)ds2
AdS2

), (3.16)

where the function f(y) is found to be

f(y) =
1

2
(1 +

√

1 − 2γ2 cosh 2y). (3.17)

Also, the two asymptotic values of the dilaton φ± ≡ φ(±∞) are found to be

φ± = φ0 ±
1

2
√

2
log

(

1 +
√

2γ

1 −
√

2γ

)

. (3.18)

1Alternatively we can work in the analog of Poincare Patch coordinates where we drop the 1 from h(r)

and think of θ as living on the real line as opposed to on a circle. In this case we describe a single defect

at θ = 0.
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For γ = 0 the dilaton is constant, φ = φ0, and the metric reduces to pure AdS in the

coordinate system of eq. (3.2).

The geodesic distance L is needed in order to compute the holographic entanglement

entropy. To obtain it, we have to be careful about the regularization of the UV divergence.

This can be done by expressing the asymptotically AdS metric always in the form ds2
(3) ≃

R2
AdS

dz2+dx2
−dt2

z2 . Then the UV cutoff is always given by z = ǫ. In our case of (3.16) we

obtain

ǫ = e−y∞ 2

(1 − 2γ2)
1
4

. (3.19)

In this way, we can find the additional contribution to the entanglement entropy when we

put a non-zero value of the Janus deformation γ to be

∆L = L − L∞ = 2RAdS(y∞(γ) − y∞(0)) = RAdS log
1

√

1 − 2γ2
. (3.20)

The radius and the 3D Newton constant expressed in terms of the dual 2d CFT quan-

tities are given by

RAdS =
√

g6(Q1Q5)
1/4ls, 4G

(3)
N =

√
g6(Q1Q5)

−3/4ls, g6 = gs

√

Q5

Q1
. (3.21)

Thus, in the end we obtain the shift of the entanglement entropy as follows:

∆SA =
∆L

4G
(3)
N

=
Q1Q5

2
log

1

1 − 2γ2
= Q1Q5(γ

2 + γ4 + · · ·). (3.22)

We can claim that this finite part which appears in the Janus background actually cor-

responds to the boundary entropy (or the logarithm of the g-function) by applying the

relation (2.7).

Now we want to perform the direct computation of the boundary entropy from the

CFT side in order to compare with the above result. To treat the defect CFT we need

the doubling trick discussed in [6]. Consider again a single compactified scalar φ in the

presence of the interface where the radius of the scalar jumps from R+ to R−. This

theory is equivalent to a BCFT with two scalar fields whose radii are R+ and R−. The

boundary condition is the Neumann-Dirichlet type (i.e. there is a ‘D1-brane’ which wraps

the diagonal S1 in T 2) as we will review in appendix A. Since the g-function is proportional

to the tension of the D-brane and is T-dual invariant, we obtain (see [17]) the following

results for a single boson compactified with the radius R̃

gN =

√

R̃√
2α′

, gD =

√ √
α′

√
2R̃

, (3.23)

for Neumann and Dirichlet boundary conditions, respectively. For the Dp-brane wrapped

on T p with the B-field (i.e. the gauge flux) we obtain

g = 2−p/4 · det(G − BG−1B)1/4, (3.24)
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where we assume that all torus coordinates have the periodicity xi ∼ xi + 2π
√

α′.

Our system is described by a D1-brane stretching in the diagonal direction of T 2. This

is T-dual to a D2-brane with a gauge flux B12 = 1, which corresponds to a single D0

charge. Plugging in G11 = 1
R2

+
and G22 = R2

−, the formula (3.24) leads to

g =
1√
2

√

R+

R−

+
R−

R+
. (3.25)

Indeed we can confirm g = 1 at R+ = R−, which corresponds to the absence of the defect.

Thus we get2

∆Sbdy = log g = log

√

R+

R−
+ R−

R+√
2

. (3.26)

Then we need to estimate the value of R+

R−
dual to the Janus solution. First, we notice

that the warp factor of the T 4 part becomes the constant 1 in the string frame because

GEinstein
µν = e−

1
2
φGstring

µν . Thus the kinetic term of the (T 4)Q1Q5/SQ1Q5 sigma model should

be proportional to 1
gs

= e−φ. Explicitly, this term goes like ∼ e−φ
∫

dz2Gstring
µν ∂Xµ∂̄Xν .

Thus the radius is proportional to e−φ/2. The ratio R+/R− in the Janus solution becomes

R+

R−

=

(

1 +
√

2γ

1 −
√

2γ

) 1
2
√

2

. (3.27)

We can estimate the boundary entropy as follows

Sbdy = 4Q1Q5 log
1√
2

√

√

√

√

(

1 +
√

2γ

1 −
√

2γ

)
1

2
√

2

+

(

1 −
√

2γ

1 +
√

2γ

)
1

2
√

2

= Q1Q5

(

γ2 +
7

6
γ4 + · · ·

)

.

(3.28)

As expected, the boundary entropy in the free theory can also be calculated via the free

energy yielding identical results. We present that calculation in appendix A.

Thus the leading term (∼ γ2) from AdS (3.22) agrees with the one from CFT (3.28).

Thinking of the Janus field theory in the framework of conformal perturbation theory,

as in [20], this agreement hints at a non-renormalization of some correlation functions of

the Lagrangian. The relevant correlation functions are those of the Lagrangian with the

twist fields that produce the n−sheeted Riemann surface, corresponding to Zn in (2.8);

refer to [2, 5] for general discussion. Also, as shown in figure 3, the deviations of (3.22)

2The boundary entropy of this DCFT very recently has also been studied in [18]. Interestingly, the

authors find that such an interface, where the radius of a compact scalar jumps by a finite amount, can

increase the entropy by splitting into 2 defects with smaller jumps. This process repeats and ultimately one

should obtain infinitely many defects with infinitessimally small jumps. In [18] this property is identified

as an instability in the sense of the renormalization group flow. The CFT has relevant operators that drive

the RG flow away from the fixed point with a single defect. This only turns into a dynamical instability

if we promote the radius of the scalar into a dynamical field. We thus should not expect to see this as an

instability in the spectrum of normalizable fluctuations around the Janus geometry with fixed asymptotic

behavior, consistent with the positive energy theorem proven for Janus-type solutions in [19].
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Figure 3: The plot of the boundary entropy from both the AdS and free CFT calculation. We

plotted the values of
Sbdy

Q1Q5
= log g

Q1Q5
as a function of γ. Notice that γ can take the values 0 ≤ γ ≤ 1

√

2
.

The upper and lower curve correspond to the free field CFT result (3.28) and AdS result (3.22),

respectively. They almost coincide with each other, but there is a small deviation.

from (3.28) are very small for any value of γ. We may notice that the boundary entropy

in the free field theory is always larger than that in AdS (i.e. at strong coupling), which is

natural.

3.3 Probe computations for D1 D5 system

Last, but not least, we want to study another set of DCFTs. A whole class of DCFTs can

be realized via probe3 D-branes in known AdS backgrounds [21]. For AdS3 such probe

branes were first discussed in [22]. In the dual field theory, the probe brane corresponds

to adding a finite number of localized matter fields into a CFT with a large number of

degrees of freedom, for example Nf fundamental hypermultiplets into a large Nc gauge

theory. Focusing on 2d field theories, we can start with the AdS3 × S3 × T 4 spacetime

considered in the last subsection and add a probe F1-string on AdS2 or a probe D3 brane

on AdS2 × S2 [23, 24]. Without solving for the backreaction of these branes we cannot

extract the entanglement entropy. It is however straightforward to obtain the free energy

at high temperatures directly from the probe action, just as we did in section 3.1.3 for the

RS brane in the small tension limit.

Consider M F1-strings or M D3 branes in the BTZ black hole background eq. (3.11),

since these are the potential supersymmetric probes. These branes have an action which is

given by their area just as in the RS toy model. In addition there are also couplings to the

background form fields, in particular in the WZ term in the D3 action. We must consider

how these terms contribute to the action. In the string theory setup the background is

supported by a 3-form RR flux H. A convenient gauge choice for the RR 2-form is to

take it to be of the form BRR = B(r)dt ∧ dθ. The probe embedding we are looking for

is the same θ = 0 one we discussed in the RS toy model. Since the pullback of BRR for

this embedding is zero it does not contribute to the on-shell action and, as before, we get

3Probe brane here refers to the limit where the backreaction of the brane on the geometry is negligible,

so that the brane simply minimizes its worldvolume action in a given fixed background. In the field theory

this corresponds to the quenched approximation which is justified by a large number of colors limit.

– 12 –
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the free energy (and hence the boundary entropy associated with the defect) simply from

the volume of the brane. The result, as in eq. (3.14), is that for a brane of tension λ the

boundary entropy of the defect dual to the probe brane is

S = 2πRp+1
AdSλp. (3.29)

For the F1 and D3 branes all we need is to plug in the relevant values of the tension λF1,3

using eq. (3.21). The general formula is that the tension of a Dp brane is λp = 1
(2π)p

1
gs

1
lp+1
s

and λF1 = 1
2πl2s

for the fundamental string. With this we get for a single probe brane

λF1 =
1

2πl2s
=

gsQ5

2πR2
AdS

⇒ SF1 = gsQ5,

R2
AdSλ3 =

R2
AdS

(2π)3gsl4s
=

gsQ
2
5

(2π)3R2
AdS

⇒ S3 =
gsQ

2
5

(2π)2
. (3.30)

For M probe branes we get M times these expressions. A boundary entropy scaling as MQ5

is expected for the D3 brane from the weak coupling consideration. This gets enhanced by

a power of the ’t Hooft couplings gsQ5. Such a strong coupling enhancement of the free

energy has been seen in other probe systems before, such as the D7 probe that adds flavor

to N = 4 super-Yang-Mills, where the free energy scales as λNfNc instead of the naive

NfNc (see e.g. [25 – 27]). For the F1 string we see a very similar effect. This determination

of the boundary entropy from the free energy contribution due to a probe brane can easily

be generalized to higher dimensional systems. What is unclear to us at the moment is

whether, as in 2d, in these higher dimensional examples an equivalent definition of the

boundary entropy can also be given via the entanglement entropy. We hope to return to

this issue in the future.

3.4 Size and shape (in)dependence

Given our understanding of the meaning of the boundary entropy, we would expect that the

contribution to the boundary entropy of a defect should be independent of the size of the

subsystem enclosing the defect as long as the defect is in the center of the interval. For a

defect that is off-center the folding trick can not be used to reduce the entanglement entropy

calculation in the DCFT to the well known case of a BCFT, as we pointed out in section 2.2.

It appears that in a DCFT the entanglement entropy of such an asymmetrically shaped

region depends explicitly on the microscopic details and not just on the two universal

numbers c and g. In this subsection we want to reanalyze this issue in the context of the

holographic calculation in the Janus framework.

We calculate the entanglement entropy of a spatial interval of length l containing the

defect on the field theory side, but potentially off-center. From the three-dimensional point

of view, we must find the geodesic length of a spacelike segment r(y) in the metric (3.2)

with one endpoint at y = −∞, r = r0 and one endpoint at y = ∞, r = r0 + ∆r. In line

with what we said above, we expect the boundary entropy to be independent of the length

r0 but to depend on the asymmetry of the interval about the defect parameterized by ∆r.

– 13 –
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The geodesic action is independent of r and leads to the conservation equation

f(y)r′
√

f(y)r′2 + 1
= α (3.31)

where α is some constant that sets the asymmetry of the interval that is nontrivially related

to ∆r (this can be seen by integrating r′ from y = −∞ to y = ∞).

The fact that the geodesic length depends only on r′ tells us immediately that the

boundary entropy is independent of r0 as expected. In order to establish the dependence

on α, we must calculate the geodesic length in the Janus system for some nonzero α and

subtract from it the geodesic length in the pure AdS system, being careful that in both

calculations the boundary interval has the same length. It is very easy to see that in

this case the difference in entanglement entropies between Janus and pure AdS gets a

contribution from the detailed shape of the warpfactor around the center of AdS (that is,

around y = 0).

4. Conclusion

In this paper we have calculated the boundary entropy in several strongly coupled 2d defect

conformal field theories which have a holographic dual. We confirmed that the definition

of the boundary entropy in terms of the entanglement entropy gives identical answers to

the definition in terms of a free energy at large temperature. Perhaps most interestingly,

we found that this equivalence only holds in the case that one calculates the entanglement

entropy for an interval that has the defect at the center, so that the DCFT can be mapped

to a BCFT via the folding trick and the entanglement entropy is completely specified by

two universal numbers, the boundary entropy and the central charge. In a DCFT, the

entanglement entropy of an asymmetric interval captures detailed information about the

microscopic details of the theory. In particular, from the knowledge of the entanglement

entropy for arbitrarily shaped intervals one can reconstruct the length of all geodesics in

the bulk and hence presumably the bulk metric.

Our methods employed in the bulk can readily be generalized to higher dimensions.

In this case it is not clear if there is a similar universal definition of a boundary entropy

as in 2d, though we may speculate that a coefficient of subleading divergent parts in the

entanglement entropy will be a counterpart of the boundary entropy. However, it should

still be interesting to calculate free energies and entanglement entropies associated with

defects in strongly coupled theories in more than 2 dimensions.

Acknowledgments

AK would like to thank the Yukawa Institute for Theoretical Physics in Kyoto for their

hospitality while this work was initiated. The work of AK and ET was supported in part

by the U.S. Department of Energy under Grant No. DE-FG02-96ER40956. The work of

TT is supported in part by JSPS Grant-in-Aid for Scientific Research No.18840027 and by

JSPS Grant-in-Aid for Creative Scientific Research No. 19GS0219.

– 14 –



J
H
E
P
0
3
(
2
0
0
8
)
0
5
4

A. Janus entropy at weak coupling from free energy

A.1 Two point function in the presence of the defect

We consider the interface CFT defined by a D dimensional free scalar field φ whose radius

jumps from R+ to R− at y = 0. This is defined by the following action (in Euclidean

space)

S =
R2

−

2

∫

y<0
dD−1xdy∂µφ−∂µφ− +

R2
+

2

∫

y>0
dD−1xdy∂µφ+∂µφ+ (A.1)

where y is the direction which is perpendicular to the defect, D is the total dimension and

µ runs over all spacetime directions except y. We define

c± =
1

R2
±

. (A.2)

Imposing the on-shell condition, variation of the action with respect to δφ± leads to

δS =

[

1

c+
∂yφ+δφ+ − 1

c−
∂yφ−δφ−

]

|y=0. (A.3)

Since we require the boundary condition

φ+(xµ, y = 0) = φ−(xµ, y = 0), (A.4)

we have δφ+ = δφ− at y = 0. Thus the principle of least action leads to

c−∂yφ+(xµ, y = 0) = c+∂yφ−(xµ, y = 0). (A.5)

These two conditions are enough to determine the propagators

〈φ+(x1, y1)φ+(x2, y2)〉 =
c+

((y1 − y2)2 + (x1 − x2)2)
D−2

2

+
c+a+

((y1 + y2)2 + (x1 − x2)2)
D−2

2

,

〈φ−(x1, y1)φ+(x2, y2)〉 =
c+(1 + a+)

((y1 − y2)2 + (x1 − x2)2)
D−2

2

, (A.6)

〈φ+(x1, y1)φ−(x2, y2)〉 =
c−(1 + a−)

((y1 − y2)2 + (x1 − x2)2)
D−2

2

,

〈φ−(x1, y1)φ−(x2, y2)〉 =
c−

((y1 − y2)2 + (x1 − x2)2)
D−2

2

+
c−a−

((y1 + y2)2 + (x1 − x2)2)
D−2

2

,

where we defined

a+ = −a− =
c− − c+

c− + c+
. (A.7)

It is clear from the above formulation that we can equivalently treat the system as

two fields φ+ and φ− that live in the same half space defined by y ≥ 0. This is called the

doubling (or folding) trick and it is rather common, especially in two dimensional CFTs.

From this perspective, the constraints (A.4) and (A.5) are regarded as the Neumann-

Dirichlet boundary condition at the open boundary y = 0.
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A.2 The boundary entropy in the presence of the defect

Now we concentrate on the D = 2 case. In order to compute the boundary entropy, we

need to evaluate the partition function. We employ the normalized field ϕ± = R±φ± such

that the action looks like

S =

∫

y>0
dtdy[∂µϕ+∂µϕ+] +

∫

y<0
dtdy[∂µϕ−∂µϕ−]

= −
∫

y>0
dtdy[ϕ+∂µ∂µϕ+] −

∫

y<0
dtdy[ϕ−∂µ∂µϕ−]. (A.8)

The boundary condition now becomes

R−ϕ+ = R+ϕ−, R+∂yϕ+ = R−∂yϕ− (A.9)

at the interface y = 0. Imposing (A.9) and the following normalization,

∫

∞

0
ϕ(i)+

p (y)ϕ
(j)+
q (y)

dy

2π
+

∫ 0

−∞

ϕ(i)−
p (y)ϕ

(j)−
q (y)

dy

2π
= δ(p − q)δij , (A.10)

we obtain the orthogonal basis with the momentum p > 0 as follows4

ϕ(1)+
p (y) =

ν − 1
√

2(1 + ν2)
eipy +

ν + 1
√

2(1 + ν2)
e−ipy,

ϕ(1)−
p (y) =

1 − ν
√

2(1 + ν2)
eipy +

ν + 1
√

2(1 + ν2)
e−ipy, (A.14)

and

ϕ(2)+
p (y) =

ν + 1
√

2(1 + ν2)
eipy +

ν − 1
√

2(1 + ν2)
e−ipy,

ϕ(2)−
p (y) =

1 + ν
√

2(1 + ν2)
eipy +

1 − ν
√

2(1 + ν2)
e−ipy. (A.15)

Here, we defined ν = R+

R−
and the dependence on the time x0 = t has been suppressed.

When we expand the scalar field in terms of this basis

ϕ =
∑

p>0

(

c(1)
p ϕ(1)

p + c(2)
p ϕ(2)

p

)

+ c0ϕ0, (A.16)

4It is useful to note the step function is expressed as follows

θ(y) =
1

2π

Z

dp

ip + ǫ
e

ipy
, (A.11)

which leads to
Z ∞

0

dy

2π
e

ipy =
1

−ip + ǫ
=

1

2
δ(p) + i

p

p2 + ǫ2
. (A.12)

Notice also

δ(p) =
1

−ip + ǫ
+

1

ip + ǫ
. (A.13)
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then the measure of the path-integral is given by

[Dϕ] =





∏

p>0

[dc(1)
p ][dc(2)

p ]



 · [dc0]. (A.17)

On the other hand, in the case of the ordinary scalar field theory without any interface,

the normalized basis is given by eipx (just setting ν = 0). The measure for this basis is

denoted as

[Dϕ0] =





∏

p>0

[dc0(1)
p ][dc0(2)

p ]



 · [dc0
0]. (A.18)

It is easy to see [dc
0(i)
p ] = [dc

(i)
p ] from (A.14) and (A.15). In this way we have found

that the difference between the partition function with and without the defect comes from

the p = 0 contribution. Notice that the zero-mode c
(i)
0 spans the interval

0 ≤ c
(i)
0 ≤

√
2π
√

R2
+ + R2

−. (A.19)

This is because the scalar ϕ± is compactified with the radius R±.

What we are interested in is the ratio

g =
Zinterface
√

ZR+ZR−

, (A.20)

where ZR+ is the partition function with an infinitely long x direction radius with R+.

This clearly coincides with the ground state degeneracy g discussed in this paper. In this

ratio, the nonzero-modes, i.e. c
(i)
p , cancel out completely. The zero-mode contribution in

the x direction reads

g =

√

R2
+ + R2

−

√

(
√

2R+) · (
√

2R−)
=

√

R2
+ + R2

−

2R+R−

. (A.21)
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